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I. INTRODUCTION

SIn optimal deterministic control theory, the basic assumption is

made that the effect of any future control action can oc ;dJuced exactly

from the present state and the dynamical equation. In many situations,

the necessity for control arises from the fact that there are disturbances

and/or component failures in the physical system. These random phenomena

prevent exact determination of the effect of all fu:ure actions, and there-

fore deterministic theory is not strictly applicable. If the effect of
these random phenomena is small, one can still use optimal control theory
to obtain a feedback control law based on deterministic considerations.

The feedback nature of the control would tend to reduce the sensitivity
to uncertainties but would require the state of the system to be measured

exactly. Again, this assumption is good only when the measurement error

is small in comparison with the signal being measured.

In many cases, the phenomena of unceitainty (including measurement

error) can be appropriately modelled as stochastic processes, allowing

them to be considered via stochastic optimal control theocy. Using the

Principle of Optimality one can reiuce the stochastic optimal control to

that of solving a stochastic Dynamic Programming equation [Al, BI

Unfortunately this equation cannot be solved numerically in most situations.

In this report, a new approach toward a practical solution for stochastic

control problems is described. This report represents Part I of a one-year

study supported by the Air Force Office of Scientific Research (AFOSR Pro-

ject No. F44620-71-C-0077): Development of Dual Control and Identification

P Methods for Avionic Systems. Part II of the study: Input Design for
LM5 IIdentification, is discussed in a separate report

1.1 Main Purposes

Ti _1960, Feldbaum, in a series of three vipars, introduced dual control

theory [F2]. His approach is a combination of setistical decision theory

and dyllmrJc programming. He pointed out abstactly that the control signal

' has two purposes that might be conflicting: ore is to learn Pýout any un-

known parameters and/or the state of the syztem• the orher is Lo ,iohievc (-



control objective. Thus the best control must have the characteristic

of appropriately distributing its energy for learning and control pur-

poses. However, no further development or algorithms that implement

these ideas appear in the literature. Feldbaum used a static example

to demonstrate his dual control theory, but it is difficult to visualize

how a dual control will work in a dynamic situation. One of the maiu

purposes oi thIs study is to provide a deeper understanding of dual

control theory ior dymamical systems. Another objective is to develop

an approach toward obtaining (or approximating) a near-optimal dual con-

trol that can be implemented, with the objective of indicating the pot-

ential applications of the rasults to Air Force problems.

1.2 Outline of the Report

In Section II, optimal stochastic control theory is reviewed and

the practical difficulties in computing and realizing the optimal control

law are pointed out, both serving as a motivation for the development of

the later ser •n3.

In Sactiton III, the stochastic control problem is reformulated in

light of the dual naw:ure of the control and a one-step optimal dual

control strategy which possesses an active learning characteristic is

obtained. This rosult is new, and in fact in entirely different from

the other suboptimal approaches reported in the literature.

In Section IV, the results are specialized to a very important

class of problems of controlling a time-varying linear system with ran-

dom parameters, and a specific algorithm is developed for this class of

problems. Since the derived algorithm is rather complicated, illustra-

tive examples are presented to provide understanding of the dual nature

of the resulting control strategy,

In Section V, three example problems, described in detail, are in-

tended to demonstrate (1) the computational feasibility of the new

albqrithm, (2) the performance level of the new algorithm, and (3) to

provide more insight into the dual control theory.
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In Section VI, potential epplications of the results obtained

during this research are indicated and recommendations are made for

g •ereas for future research.

1.3 Summary of Contributions

A new formulation and a new stochastic control algorithm for general

nonlinear stochastic systems hes been ,4eveloped. Tht algorithm posseeses

an active learning characteristic that is lacking in the existing nub-

optimal stochastic control algorithms described in the literature. Sim-

ulation studies dem-nstrate that this algorithm ia potentially feasible

for large classes of Air Force ?roblems. Sizable improvement over the

widely used certainty equivalence suboptimal control policy is demonstrated in

the examples being considered. The important class of problems of con-

trolling a linear time-varying system with random parameters is treated in

detail, and a specific algorithm for this class of problems is obtained. Sim-

ulation studies on some example problems provide certain insights into the

dual nature of the control. Also, these examples represent the only com-

plete simulation studies cn dual control in the literature.

1.4 Notations

Throughout the report, lower case underscored letters stand for vectors

(e.g., x, y); upper case underscored letters stand for matrices (e.g., A, B).

Noise disturbances are dencted by lower case underscored Greek letters (e.g., i,

0 n).

The transpose of a matrix A is denoted by A . The transpose of a

column vector, x, is a row vector and is denoted by x

Let A be an nxn square matrix; the trace of A is defined as

n

tr A a 1a (1.1)

i-3

|3



Using the convention that a vectir is always in column form one has the

gradient operator

r a ax: 1 (1.2)

The gradient of the scalar function H(xO,), a column vector,-is-written as

H -vH; He-H ; H (1.3)

x x-

The Jacobian of the m-vector f is the matrix

. afm .... _M_

- L •I 1xI f Iax1  ax n

Accordingly,

H [Vo(H)']' - (V8_ HP' - V V_ H H'x (1.5)

H -V V'H (1.6)

The natural base in Rn is denoted by {e,,)n where
i=l

.0

eý 12 ith component. (1.7)



II. OPTIMAL STOCHASTIC CONTROL

in this section, the formulation and ,solution for the optimal stoch-

astic control problem for discrete time systems is discussed, as are the

difficulties associated with the solution procedures. These difficulties

motivate the specific dual control approach presented in Secti.on III.

2.1 Problem Statement

Consider a discrete-time nonlinear stochastic system described by

x(k+l) _fk,x(k),u(k)] + ý(k) ;

y(k) - h(k,x(k)] + n(k) , k 0,1,*...N-1 (2.1)

where X(k) e Rn, u(k) c R r and y(k) e Rm. It is assumed that x(O),

{_•(k), f_(k+l)}k-= are independent Gaussian vectors with statistics:

E{x(0)} = c (010); Cov{x(O)) =(Ol0) (2.2)

E{_(k)} 0 ; Cov{_(k) 2Q(k) (2.3)

E{' (k+l)} _ ; Cov{t1(k+l)1 - R(k+1) . (2.4)

Consider further the performance measure

N-1

J - Ef*[x(N)] + E T[2x(k),u(k),k]} (2.5)
3 k-O

where the expectation E{N is taken over all underlying random quantities.

Finally, consider admissible controls of the feedback type:

k_ U k-_ k ) ' (k) k; " ... ,u(k -l) ' (2.6)
u(k) - (k,Y ,U W;((),O)~k}

The goal is to find the optimal control sequence fu*(k)}N-I that is of the form- 5k-

g , 5



(2.6) and minimizes the cost (2.5) subject to the dynamic constraint (2.1).

2.2 Optimal Stochastic Control Solution Method

To solve the optimal control problem stated in Section 2.1, Bayes'

rule and dynamic programming are used. A complete derivation for the

optimal solution is given by Meier [Ml ];therefore, we shall only outline

the derivation and summarize the results below.

An important concept is the information state. This can be viewed

as a quantity which is equivalentt to the observation process yk and all

a priori knowledge of the system and Uk-l in describing the future evolu-

tion of the system. Thus, an information state will summarize all the

sufficient information content conveyed by the observation process yk, and

past control sequence Uk-l. Clearly, the combined sequence (Yk,Uk-!) is an

information state. If we denote this information state by

1 k k-l
?k= (YkU (2.7)

z1

1
then a recursion relaticn fori is

gkl+l k I~) -lkli[k,?c(k) , u(k)] 4 ~(k) + 7 (k+l)}P ,U(k)I (2.8)

where ý(k), n(k+l) and x(k) are random vectors. Anccher such information
2 A

state is the conditional density,1 - p[x(k)IYk, ukl]. Using Bayes' rule,

a recursive equation for the conditional density is given by [Al], [Ml]

2 2, u(k)] - 1 P [~Y-(k+l) Ilxk+l) I]fp (xE(k+l) 1(), R(k) 12

where Ck is a normalizing constana. Next, we can use the principle

of optimality in the "information state" space, which gives us

t A precise definition of equivalent statistics is given by Streibel [S3].

6



the stochastic dynamic programming equation (see also Meier [Ml]):

I*(tpk, k) - min E .CAX(k),u(k),kJ
S•u(k)

+ I*R [.,!~) k+11 YkI U -1 (2.10)
k+ k

where u(k) is a deterministic quantity,,9?k is an information state (can be

eitherY 1 or,3 k), and I*{.,k} denotes the optimal cost-to-go associated

with the information state at time k. If we useýj as an information state,

then the optimal control can be obtained by solving (2.8) where an optimal

feedback table, {u*(ykUkl)N-l, is constructed for all possible pairs

(ykUk-l)t, k-l, 1, ... , N-1. On the other hand, if we used as an inform-

ation state, then the optimal control can be solved by the following separate

procedures:

A. Control - The optimum control law is found as a function of

the conditional density p[x(k)Iyk,Uk-l] by solving the sto-

chastic dynamic programming equation (2.10). In general,

this can be an off-line procedure.

B. Estimation - The conditional density is updated by use of the

recursion relation (2.9), and the optimum input is obtained

from the optimum control law. The updating of the conditional

density must be done in real time.

2.3 Difficulties Associated with the Optimal Solution Procedure

Theoretically, the optimal control problem has been solved when equations

(2.9) and (2.10) are derived; however, in practice, the problem only begins

with these equations. In the following, we discuss the difficulties associat--=- 2
e ed with the solution procedures using eitherý'k or 2k as the information

state. This will motivate our development in the next section.

From (2.7), we note that the dimension of9 grows linearly in k. Thus

even with appropriate quantizing, the number of quantization points, which



grows in time will soon become too large to be handled by a ccmputer of any

size. Note that the expectation in (2.10) requires the availability of the

conditional density, p[_x(k)IYk, uk-l], which is usually infinite dimensional.

This adds one more "dimension" of difficulty in carrying out the dynamic pro-

cedure. In general, the optimal cost-to-go-function, I*[.,.], cannot be

expressed as an analytical function of the information state. Thus, direct

solution of (2.10) becomes practically impossible for any computer. We face

the similar kind of difficulty even if we use 9 as the information state.
2k

In this case the information state, Yk is usually of infinite dimension for

all k Z1. One may attempt to approximate the solution for (2.10). However,

even if this can be done, it still does not solve the dimensionality problem,

since in general, the approximate optimal control law is nonlinear in the in-

formation state, and can only be expressed as a table look-up type of function

of the information state. This prohibits functional realization of the optimal

control law, and thus real-time generation of the optimum control value is

practically impossible for most problems.

Note that the basic difficulty is in the control rather than in the estimation

procedure. The updating of density although a difficult problem in itself,

can be reasonably approximated efficiently by using parallel estimation pro-

cedures. Some recent results [B3],[T3],[A3],[Ll] indicate the feasibility

of parallel estimation. We should emphasize the fact that the capability of

approximating the conditional density does not solve half the problem because

the difficulty in obtaining the optimal control in real time is not so much

due to the estimation procedure as to the growth in dimensionality and to

the fact that even if an optimal control law is obtained, the extremely large

(perhaps infinite) number of possible information states will prevent it from

being realizable.

In the special case where the system (2.1) is linear, the conditional

density p[x(k) jyk,uk-l] is equivalent to the conditional mean estimate A(kjk)

(see Streibel [S3 1 ,Meier [Il],Tse [T2]), which is a finite dimensional vec-

tor generated by the Kalman filter. If in addition, the cost is quadratic,

then the optimal cost-to-go I*(.,k] can be expressed analytically as a func-

tion of x(klk), so that equation (2.10) can be solved exactly to yield a

realizable linear feedback law (Joseph and Tou J1 1 , Meier, Larson and Tether
[M2] Streibel [S3 1  Tse(T 4 1 ). This result is known as the Separation Theorem

or Certainty Equivalence Principle.



2.4 Previous Suboptimal Approaches

In the literature, the most popular approximation method used for

combined estimation and control is linearization of the plant about the

deterministic optimal trajectory and appl±;,cion of the well-known sepa-

ration theorem to the resulting perturbation equations. However, this

may not SL.-'e good performance if the system is very nonlinear and the

noise level is high. This is because with the linearization approach

the control action is corrected only after it has been di3covered that the

trajectory has deviated from the nominal, But, in fact, if it is known

that a disturbance will occur in the future, the control should be modified

before as well as after the disturbance occurp in order to minimize its

effects. Therefore, if linearization is to be used, some nominal traject-

ory other than the deterministic optimal trajectory should be used. Den-

ham [Dl], Meier [M3], and Vander Stoep[Vl] considered the problem of choosing

a nominal path to minimize a certain cost criteria on using second order

analysis of the perturbed system along the nominal path. The advantage of

these approaches is the simplicity of the resulting control law. The main

drawback is the validity of assuming a nominal trajectory. This assumption

is unjustified if there are uncontrollable unknown parameters in the system.

A much more "adaptive" type of controller would be desirable.

The open-loop feedback optimal approach suggested by Dreyfus [D2, and

applied to specific problems by Tse and Athans [T], Bar-Shalom and Sivan[B2]

Curry [CI], Aoki(All and Spang[S2] , suffers from the drawback that the resulting

control is passive in learning -- the decision of the control action does not

anticipate the fact that future learning is possible. An extension of this

approach -- the m-measurement feedback control suggested by Curry -- .s

only slightly less complicated than the optimal approach. To the authors'

knowledge, no successful application of this method has been reported in the

literature.

All these approaches take into account the past observation information

but ignore the future observation program. In the next section, we shall

* describe a new method which is based on the Principle of Optimality on the

9



2information state ' and the concept of dual control. In contrast to the
k

previous approaches, this method will not only take explicitly into account

the past observation information but also the future observation program.

10



IIM DUAL CONTROL FOR STOCHASTIC SYSTEMS-

AN ACTIVE LEARNING MROCEDURE

In Section II, it was noted that the main difficulties in implementing

the optimal control law are:

(1) The informstion state is eigher infinite dimentional or finite

but grows with time,

(2) The optimal cost-to-go associated with the information state

is generally a non-analytic function,

(3) Storage of the control value associated with each information

state at time k, k-O,...,N-I is practically impossible due to

the large dimensionality.

p Thus a reasonable suboptimal approach would be to

(1) Reduce the dimension of the information state space so that it

stays a constant dimension for all time,

(2) Approximate the optimal cost-to-go associated with each

information state at time k, k=0,...,N-l,

(3) Compute the control value on-line rather than obtain the

feedback law off-line and store the whole "feedback table."

Each of these procedures are discussed in detc; .1 in the following

subsections. To simplify the discussion, assume that the cost is of the

form:

yax(k), u(k),k] = L[x(k),k] + 0[u(k),k]

The extension to the more general cost is straightforward.

~i



3.1 Wide-Sense Adaptive Control

As dipeussed in Section II, the information state, p[E(k)IYk, U kl]

is generally of infinite dimension. One approach to reduc.e this dimension

is to use the "wide-sense" property[D2 ] ; in this approach the controller
is restricted to the form

u(k) - u[k,i(kjk),E(klk)] (3.1)

wb re

x(kIk) - E{x(k)IYk, Ik-1T (3.2)

E(klk) - Cov{x(k)IYk, uk-1} (3.3)

We shall call such a control scheme the wide-sense adaptive control law.

The computation of x(klk), &(klk) can be obtained by any one of the

following methods:

(1) Extended Kalman Filter[$4]'[J2]

(2) Adaptive Filter with Tuning[T5]

(3) Second Order Filter[A2 ]

(4) Parallel Estimator[B2],(T3],[A3]

Depending on the specific problem under investigation, one of these methods

may be more appropriate than the others.

3.2 Perturbation Control and the Dual Cost

Before going into the new approximation procedure, consider first the

perturbation control problem and obtain a cost that exhibits the dual

property of the control.

The present time is indexed by k. Let us assume that Uk-l

has been applied to the system, and that the observation sequence Yk has

been obtained. The conditional mean, •(kkk), and covariance, L(klk), are

assumed available from a learning device, an estimator. Consider a nominal

[ 12



open-loop control sequence Uo(k,N-1) A{u (J)141 and the associated nominal

pach

it (J+l) - fIJ'x (J),U o(J)] ) ~,.,- (3.4)
-0 -10 -0

with initial condition x (k) - x(klk)
"0

Let 6x(j) be a small perturbation about the nominal path due to the dis-

turbance 4(j) and a perturbation control •u(j). The true trajectory and

control are given by

x(j) - x0 (j) + 6x(j) ;

u(j) - U(j) + 6U(j) (3.5)

with x(j), u(J) satisfying (2.1). Since 6x(j), 6u(j) are assumed to be

small, we can approx4.mate the cost-to-go by expanding it up to second order:

N-1 k

J(k) E{p(x_(N)] Z [L+x(i),i] + *[u(j),J]]IYk
j-k

I )N-IJ(k) + E{•:,6x6(N)+t i fl ,xN + 'L ()X

0 -- - -- Juk O -x

(j6xj)+ 'a(j)u(j)+¾'() (i)uawi)]Yý

2 ~ x -~ -' xoDuu -

whre(3.6)

where

N-1

(k) P[x o(N)]+ I L[xo(J),J]+ [_uo(J),J] (3.7)
0 - Jk

The quantities 4, and 4' are, respectively, the gradient and Hessian

,2E o'x X
of 4(') with respect to x evaluated along the nominal trajectory. For a

fixed nominal, choosing 6u (j), J'k,...,N-I to minimize the incremental

-0



cost Wit) 9 J(k)-Jo(k) , one obtains a cost J*[k,Uo(k,N-l)] associated with

the nominal control U (kN-l).

Let us consider the perturbation control problem. From (3.6), we have

AJ(k) A J(k)- Jo(k) = E[, 6,x(NIN). + IS"'(NIN) S(NIN)

+ E [(L' (i)6x(iI1j) +ý62E (J j)L 6ý( 1j) +0' (j)6Su(j)N--1

+ •u (J)*oIuu (+) u))] + lo(NIN)+ I L (J)Zo(j 1J)
itk J-k -13 -X -O

-- - - - J k -.--

(3.8)
where 6x^(JlJ) -E{6x(J)IYJ} and Z (jij) A Cov{6x(J)1YJ}. The problem is

0
to minimize AJ(k), subject to the dynamic constraints of the second order

incremental process.

Application of dynamic programming with retention of up to second order
terms yields the following (the derivations of (3.9)-(3.17) can be found in

Appendix A):

__ • - --0 - -ou ou--

+ H o,u.X (j)]6ýx(j I J) +H o,u(J) } (3.9)

where

Ho0(j) L[x o0(j),j I +ý[U oWj),I +4(j+l)fo0(j);f 0o(j)' f [j,x o(j),u o(j)] (3.10)

S(J) =Ho ,x(J) - [f--o,u ()-0 (Jlf-o,x (j o,u x (j) I

[Hou (j) +fo u'J)K o(J+l)f ~(J)]-l Ho (J) go o(N) =0~

(3.11)
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"* [H (J) +f' (J)K (J+1)f (D)1I
o,U u -v 1 U __o _o

"* [f' ,(J)K (J+1)f X(J)+ H 'u j]+ H x (.1); K (N)
0U 0 0- 0U 0_iX 0 O

(3.12)

and the op'imal cost associated with the nominal Uo (k,N-1) is givion by

J*[kU0 (k,N-1)] -J (k)+ g0 (k) +'Tr I Op E (NIN) + I ( xx (J~ 1j)
0 0 0 LI 0,XV ik --

+ rE (J+llj) - 1 (J+ljj+1)]K 0(J+1))l (3.13)

with g 0(J) satisfying

g0 0j) - 90(J+1) - H o (j)[H __u (D)+ f'u(J)K a (J+1)f 0,(J)]-H O,(J)

90()-0 (3.14)

and -Z 0(JIi) is the future error covariance which is assumed to be generated

* by the extended Kalman filter:

E (J+llj+i) = [I -V 0(J+1)h O,(i+1)1o(i+llj) ; J-k,..,,N-1

Z 0(k~k) - E(klk) (3.15)

v (J +1.) - ,(Ji+l1 J) h (J+1'/ [h (J+1)E (J+llj))ht  (J+l) +R(J+l) 3-

(3.16)

E (J+Jjj) -f (j)E E(Jj)f' (j) +-(j) .(3.17)
-a 1o,x -o-e _

Note that the updated and one-step prediction error co riances, Z (J+111+,1)

15



and E (J+l1J), are dependent on the choice of the nominal control U (kN-1).

The cost J*[k,U (k,N-1)] associated with U (k,N-1) !.volve':
0 0

. Control cost J (k)

e Estimation cost--the remaining terms involving nonnegative

weightings of error covariances

For this reason, J*[k,U o(k,N-l)] will be called the dual cost associated with

the nominal U (k,N-1). We shall comment on the existence of K (j) and (J)
0 V

in Section 3.4, item 5.

3.3 One-Step Optimal Dual Control

The outline of the one-step optimal dual control procedure, which is

the main result of this report, is as follows. It is assumed that at the

present time k, one can apply an arbitrary control u(k). From time k to
k+l a second order extrapolation is performed and for J>k+l, the future

time, only perturbation analysis about some nominal trajectory is carried

out. By assuming that perturbation control will be applied in addition to

a nominal from time k+l to the end of the process, one obtains the expression

of the cost (3.13), which includes the future estimation performance. Since

this performance depends on the present control u(k), the method is to choose

the control such as to minimize (3.13) which includes both control performance
and estimation performance. It has to be pointed out that the use of the

(fictitious) nominal trajectories and perturbations between k+l and N is

with the sole purpose of obtaining the value of the cost-to-go. The pro-

cedure is repeated at every step to obtain the value of the control to be

used next.

I)
Let [2ý,(k+l)lV, be a set of points in the state space that are sclected

on the basis of past estimation performance. Associated with each x (k+l)
N-1 -tis a sequence of nominal controls {u (J)j+k+l" The vth nominal trajectory

is obtained by

x (j+l) f[j, 2j (j), ,(J)] , J-k+l,...,N-l . (3.18)

16



Next, consider a control u(k) to ba applied at time k. Expanding the

function f[k,.,u(k)] about ^(klk) up to second order terms, we have the

predicted state and covarianct given by

n
i(k+lik) "[k,i(kjk),u(k)] +1 1 a tr-f- (k Ik),!(kt(k (3.19)

2i-li x I

.K(k+llk) f f[_klk),u(k)]_.i(kik)f[(kik,-,u(k)] +_Ck)

+ 1r n

ill e ee. tr{f x (kjk),u(k)]

• .E*(klk)fj_ [x_(kIk),u_(k)lz (k Ik) (3.20)

i thwhere f denotes the Hessian of the I component of f with respect to

and }n? f i is the natural base in Rn. The updated error covarianc. for

the incremental state estnmate is:

E(k+l Ik+l) - I- V(k+l)h [k+l,x(k+l k)1]}(k+lik) (3.21)

V(k+l) - _(k+l1k)h (k+l,_•(k+l[k)J'{h [k+l,i(k+ljk)]E(k+ljk)

h' [k+l,x(k+lk)] +R(k+l}- (3.22)
A

If the predicted state, x(k+ltk), caused by the control u(k) is closest to

x (k+l), i.e.,

SII (k+lIk)-. (k+l)If < I!i(k+lIk)-x,(k+l)II ; v' , l,...,t (3.23)

then the future analysis will be based on perturbation about the v th noinal

as derived in the previous section. Note that for all admissible u(k), there
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corresponds a nearest nominal such that (3.23) is satisfied.t The error

covariance E (J+llj+l) is given by (3.15)-(3.17) with i,ý4Aal condition
-V

E(k+ljk+l), where _(k+llk+l) is given by (3.21) and (3.22).

Since we assume that for J>_k+l, only perturbation analysis will be

carried out along the vth nominal if (3.23) is satisfied, the optimal

cost-to-go time k+l can be written, on the basis of the results of the

previous subsection, as follows (see Appendix A for the derivation):

*~~ +l+ vt{ __ I (NIN)I [^(k+ljk+l),.E(k+ljk+l),k+l1 - J (k+l) +g (k~l +i _

V V _

N-1+ k{Hvx (JlE_ (J]J) +z [_(J+I[J)

J= --

F- JIjl)] J1} + (k+l)' (k+llk+1)

+-4 (k+l k+l)K (k+l)• (k+llk+l) (3.24)

where

x (k+llk+l) x(k+l1k+l)- x (k+l) (3.25)

Therefore, the cost of applying u(k) can be approximated a6 follows:

S[u k)] E{€ u~ ) k] + L [x(k) ,k] + I* [ý(k+l [k+l),-Z(k+l lk+l) ,k+l ] Y ]k}

[uR(k),kl+E{L[xS(k),kjyk}+J (k+l)+g (k+l)+itr Z (NIN)

-k - . tr~ ,xx-v

N-1
+ I {H (J)I(jJ)+ (J+llj) (J+l[•+l)]K(J+1)

j=k Vxx

+ -itr{ [E(k+l I k) - L(k+l Ik+l) K (k+l)} (3.26)
2 

-V -
if there is more than one v satisfying (3.23), we may choose any one

of them.
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where

.l,(k+llk) - E•(k+l k) - x_(k+l) . (3.27)

Since E{L[x(k),k] yk} is independent of u(k), minimizing the cost (3.26)

is equivalent to minimizing

SJd [u(k)] - v (k+l) + f [u_(k) ,k] + g (k+l) + (k+l) Lxi(k+1 k) - x (k+l)]

+ [x(k+1jk) -x (k+l)I'K (k+l)[Lx(k+lIk) - x(k+l)]

+ + r{ E(k+_k) - E(k+llk+l)]I (k+l) + E (NIN)

N-1
+H ,xx (k+l)E-(k+lIk+l) + I H (j)z (iJjJ)---- -- jmk+2 Vxx -v

+N-1
+ Z [-..(J+lJ)-_E(j+llj+l)]KV (j +l)} (3.28)

J=k+l

subject to the constraints (3.19), (3.20), (3.21), (3.22) and (3.23) and
where Zv(j+ljJ), Lv(j+llj+l) are given by (3.17) and (3.15), respectively,
with initial condition

Lv(k+llk+l) - E_(k+llk+l) . (3.29)

The procedure for computing Jd[U(k)] is also described in Fig. 3.1.

One can extend this to the situation in which a nominal control sequence
{u [J;x(k+llk)]} Jk+1  is associated with each predicted state x(k+llk).
Thus if a control u(k) yields _(k+llk), future analysis will be carried out-~ iN-1
around the nominal control {fu[J;-(k+llk)] Nk+l and the nominal trajectory

--oo

x 0 iklýk+1) (k+llk) *(3.30)

In this case, Jd[uM()] becomes
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Jd[1u(k)] -Jo(+l) + 0[_A(k),k] + go(k+l) + tr [_(k+lQk)- z_(k+lIk+l) K]o(k+l)

N-I1+ _ Z (NIN) +H (k+l)E(k+lIk+l) + I Ho,x x (J) (j 1j)
., o,xx-'o o,xx -- +2OXX -• - -- -- J m k + 2

N-1S+ I [•E(J+llJ)-E 0(J+llJ+]l)]Ko(J+l)l, (3.31)

j =k+1

Depending on the problem under consideration, one may or may not want to

discretize the state space for the predicted state.

Denote the optimal solution for the above one-step optimization problem

by u*(k). When u*(k) is applied to the system and a new observation y(k+l)

is obtained, the estimate of x(k+l) and its error covariance are updated

and the same procedure is repeated to obtain u*(k+l). Starting with k-O to

k=N-l, we obtain a sequence of controls {u*(k)}N- which is called the one-k-O
step optimum dual control.

Note that in the above development, the choice of future nominal control

is "fictitious"; it is only used to approximate the optimal cost-to-go function.

Therefore, its choice is quite flexible and is dependent upon the problem under

consideration. In Section IV, we indicate how these nominals can be selected

for a special class of problems.

3.4 Remarks

1. Note that in most ces, Jd given in (3.28) or (3.31) cannot be

expressed explicitly as a function of u(k); thereLire, straight-

3 forward minimization techniqutes, such as taking the derivative with

respect to u(k) and setting it to zero, would be of no use.

Because of the rather complicated dependence of Jd on u(k), one

has to search to find the minimizing u(k) which will be applied

to the system. Search methods appropriate for finding u(k) are

those of local variations or, if the control is a scalar, then

a line search, e.g., Fibonacci. To obtain u*(k), start the

search at u e(k), the first of the sequence of controls obtained

by assuming certainty equivalence (i.e., the separation theroem)
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to be valid. Then determine which direction Jd decreases, next

the "box" in which the minimum lies, and then narrow it down to a

certain predetermined size, and finally make a quadratic inter-

polation from the last three points; the result is taken as

u*(k). A search procedure is described in Appendix B.

2. The approach described in this section requires appropriate selection

of nominal controls, an essential in approximating the future optimal

cost-to-go. Note that these nominals are not applied in the future,

but only to give a rough idea of the optimum cost corresponding to

future learning and control. This flexibility is a distinguished

feature of our approach. One may consider this to be an advantage

or disadvantage, depending on one's viewpoint. Clearly, such an

approach will not be of use to a designer who knows nothing about

the system he is controlling, since he is unable to select a set

of appropriate nominal controls. However, an engineer who is
familiar with the system he is controlling~can use his heuristic
knowledge to select the nominal controls. For him, this approach

is of great value, because it makes use of his knowledge to come up

with a good control strategy in a systematic manner. Thus, in some

sense, the approach bears some characteristic of heuristic program-

ming methods, [Nl] where use is made of knowledge of the system to

reduce the dimensionality of the program.

3. Let us comment on the dual nature of the control. The estimation

purpose of the control is reflected by the covariances appearing in

(3.20)-(3.22). If the predicted and updated error covariances are

independent of the control, the dual property will disappear. This

would be the case if the system is linear (with known parameters).

In general, this dual property of the control is important.

4. We shall also distinguish two different types of learning procedures.

Note that if the function f (x,u) is not a function of the control

S(e.g., when f(x,u) =f(x)-+ 1(u) and the measurements are linear
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-V

then the error covariances E(k+llk) and E(k+llk+l) will be in-

* dependent of the control action at time k; (see (3.20) and (3.21)).
The control does not influence the est~iiation performance in one
step, but the effect of the control in future estimation will appear
n steps (n>l) after the time it is applied; (note the dependence

* on the nominal in (3.15)-(3.17)). In this case, the control has the
capability of exciting certain modes of the system that will, in the
future, enhance the estimation. A typical example is the problem of

controlling a linear system with known zeroes but unknown poles. In
* the second case, if f4_x,u) is a function of u, phen the error

covariances E(k+llk) and.E(k+llk+l) will both be dependent on the
control action. Besides exciting certain modes of the system, the
control also has the capability of directly regulating the signal-

* to-noise ratio and isolating the effects of different parameters.
A typical example is the problem of controlling a system where the
control multiplies the state and/or some unknown parameters of the
system. Thus, we see that the control is "actively adaptive" since
it regulates its learning in an optimal manner.

5. A sufficient condition for K o(j), 4o(j) and go(j) ((3.12), (3.11),

(3.14)) to exist is

H (j) > 0 . (3.32)o,uf

Let us consider the deterministic control problem of minimizing the
* performance J (k) given by (3.7) for the system described by (3.4).

The Hamiltonian for this problem is given by (3.10); therefore, from

(3.1l)-(3.14), po(j) is the adjoint variable, K (j) is the return
-0

matrix for the liniear quadratic control problem whose state equation

is (3.4) linearized about the nominal and whose cost matrices are the

second derivatives of the Hamiltonian evaluated along the nominal, and

the quantity J 0(k) is the deterministic performance when the initial

state is x (k) and the nominal control is used. Thus condition (3.32)-o
is equivalent to the existence of neighboring stationary paths about

Sthe nominal trajectory.tB4] In general, if the deterministic control

problem has a solution and if the nominal control trajectory is that
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solution, then. H (j) + f' I j)K (j+l)f (j) will be positive

semi-definite. Where this deterministic optimal control is non-

singular, this matrix is positive definite and thus invertible;

and where it is singular the inverse should be replaced by the

pseudo-inverse. For a general nominal trajectory no such state-

ments can be made; however, for nominal trajectories near the

deterministic optimum, one would expect similar properties to hold.

Thus, one reasonable choice of the set {U (k+2'.,N-l)}iz would be

the deterministic optimal controls associated with {2sv(k+l)}v1'

In the special case where f[k,x(k),u(k)] is first order in the

control and O(u,j) is strictly convex in u, then Ho, (j) -o, (j)

which is positive definite by the convexity of 0; therefore in this

special case the matrix can be inverted.

6. The results hold even when the cost has the more general form (2.5).

The only change one needs to make is tb replace (3.10) by

Ho(J) =21 •[o(J),uo(j)]+ + (J+l)f[f,xo(J),•o(J)] (3.10)*

and the term O[u(k)] in (3.28) by

EM2E7[(k),,a(k),k1 JY k}) --..O (k~k),R(k),k]

+ tr{Y x[ý(k~k),u(k),k].E(klk).. (3.33)
xX
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I IV. ACTIVELY ADAPTIVE CONTROL FOR STOCHASTIC LINEAR

SYSTEMS WITH RANDOM PARAMETERS VIA DUAL CONTROL

In this section, we consider the control of linear systems with

unknown parameters, a class of problem of major theoretical and practical

importance. A control strategy that regulates its speed of learning

(i.e., the adaptivity is not passive but active) is obtained for this class

of problems by specializing the results of section III.

4.1 Problem Statement

Consider a discrete-time linear system described by

x(k+l) - A[k,e(k) ]x(k) +b[k,e(k)]u(k) +J(k)

y(k) = C[k,O(k)]xk)+•(+nk) k=0,1,... (4.1)

where x(k)cR, y(k)eRm , 6(k)cRs and u(k) is a scalar control. It is

assumed that 6(k) is a Markov process satisfying

e(k+l) = D(k)e(k) +y(k) k=0,1,... (4.2)

I where D(k) is a known matrix. The vectors {x(O), e(O), J(k), n(k+l),

(k) kfi=0,l,...) are assumed to be mutually independent Gaussian random

variables with krown statistical laws:
x ° 0

SI x(0)1 [x(O), xx(0)]; (0()>]•[0_), _ 0 (0)]; J(k)•,v[O,q(k)]

I _n(k)[ORk) ; lk>• ,_G~) ](4.3)

*• with EXxE (0)>O, E (0)>O, R(k)>O, q(k)0O, G(k)2O. The notation '*(aB_)
is used to denote that the random vector v is Gaussian with mean a and

covariance B. Furthermore, we assume that the unknown parameter G(k) enters

linearly in A(k,.), b(k,.) and C(k,.).

t For simplicity, we shall discuss only the scalar input case. The results
can be readily extended to the multi-input case. See also Section 4.5.
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A control is admissible if it is non-anticipative; i.e.,

u(k) - u(k,yk,uk-l) ; Yk {Y(1),...,Z(k)1; U -{u(l),...u(k-l)) (4.4)

Our objective is to find an admissible control sequence UN-1 such that

the cost functional

N-1
J (U) - E (x(N) - .2(N)] W(N)(N) -(N)- + I [x(k) - (k)]'

k-0

.W(k) [(x(k) - p(k) ] + X (k)u 2 (k)l (4.5)

is minimized subject to the dynamic constraints (4.1) and (4.2). The expecta-

tion in (4.5) is ,ve. all the underlying random quantities x(O), 2(0),

{C(k), n(k+l), y(k), k=O,l,...,N-1). Assume the following:

1. W(k) ý O and X(k) > 0,

2. {p(k), k=0,1,...,N} is given a priori.

Note that if p(k) =0, k=0,1,...,N, we have a regulator problem; if

{P(k)} N is a given trajectory, we have a tracking problem; and if
w(k) = , k=O,...,N-l but W(N) 0 0, we have an interception problem.

4.2 Previous Approaches

Before describing our new approach to this clase of problem it is

appropriate to summarize some of the past approaches and indicate how this

work fits into the whole development.

This problem can be solved exactly if one can solve the stochastic

dynamic programming equation (2.8) associated with the problen; unfortunately,

a numerical solution for this is prohibited by the "curse of dlmensionality"

(see Section II). Thus different approaches have been suggested in treating

this class of problem.
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[Al]
One popular approach is the certainty equivalence . If at a time

instant, the estimates of the unknown parameters are available, a control

law can be obtained by assuming the estimated parameters to be the true ones

and solving the control problem accordingly. In this manner, we obtain a

control law which is adaptive to the estimates. The problem now is reduced

to that of closed-loop parameter estimation. Such an approach has been

considered by Farison, et al.,[F1] Saridis and Lobbia.[$1] The question

now is not "how to control the system," but rather "how well can we

estimate the parameters." The advantage of this approach is the simplicity
of the control law. The major drawback to the approach is that we are

ignoring the confidence level on the parameter estimates in deriving the

adaptive control scheme; one would expect that such a control scheme will

result in a control system which is extremely sensitive to stochastic

variations, which turns out to be the case.

If the design of adaptive systems takes not only the instantaneous

parameter estimates but also the associated confidence levels into account,

it would surely result in a "better" system. One such method is the open-
rD13

loop feedback approach[ D. Typical papers along this line are those by

Bar-Shalom and Sivan[B21, Curryil , Aoki [AI Spang 2], and Tse and Athans[TI]

In the last-mentioned, it was demonstrated that in the case where only the

input gain vector is unknown, the adaptive feedback gains of the control

t •system depend upon the parameter error covariance matrix. In this open-loop

feedback approach, the fact that the estimated parameter may not be exact

is therefore taken into consideration, but the knowledge of future observation

programs is completely ignored. The problem when the system is linear with

unknown parameters that belong to a finite set has been studies by Stein and
[S51]LSarndis and Lainiotis, et al. L2] Their solution was also of the open-

loop feedback type because it did not take into account the effect of the

control on the future estimation performance.

Yet another approach is to approximate the dynamic programming equation.

Murphy [MIl], Gorman and Zaborsky[Gl] used this approach in considering the

situation where the gain vector is unknown. To the aughors' knowledge, the

extension of this approach to more general situations is not found in the

literature.
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The approach described in this section is based on the one-step optimal

dual control theory developed in Section III. As we have noted, ouch a control

scheme has the characteristic of appropriately distributing its energy for

learning and control purposes. In view of this, it is obvious that the open-

loop beedback control is, from the estimation point of view, passive. In

contrast, the one-step optimal dual control is active, not only for the
control purpose but also for the estimation purpose, because the performance

depends also on the "quality" of the estimates. Therefore, the one-step

optimal dual control can be called "actively adaptive" since it regulates its

adaptation (learning) in a systematic maoner.

4.3 The Optimal Cost-to-G'o and the Dual Effect

In this subsection, the results developed in Section III will be

specialized to the class of problems being considered here to obtain the

approximate optimal cost-to-go.

Let the present time be denoted by k. Given a point represented by

the augmented state z (k+l) - [x'(k+l), -'(k+l)]' in the augmented state
-v - -0

space, one associates with it a nominal control sequence denoted by
N-1

{u [J;z (k+l)]}Njk+l . A nominal trajectory originating from Eo(k+l) is

generated by applying the above control sequence. Consider a control u(k)

applied at time k and the resulting predicted state and covariance, denoted

as A(k+llk) and E(k+ljk), respectively. In order to bring out the dual effect

of the control, assume that for time Jlk+l, a second order perturbation

analysis will be carried out about the nominal trajectory originating at

z 0 (k+l) i i(k+llk) with a certain nominal control sequence. The details on

how this nominal is obtained are given in Section 4.4. The subscript "o" is

used to denote both "nominal" control (u [J; z(k+lJk)]) and the associated

appro imat 0 - +-kk} lnominal trajectory {zo[J; Z (k+llk)]}*+r In this manner, one obtains an

approximate optimal "cost-no-go" I*[z(k+llk), E(k+llk),k+l] associated with
£(k+llk) and E(k+llk), which is a function of u(k). This cost reflecto both

the future estimation performance and control performance. The minimization

of this cost yielde u*(k) and the procedure is repeated at every step.
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Assume that the one-step prediction •(k+lJk) and the associated error

covariance
I

K(k+llk) - cov{z(k+l)[kl (4.6)

have been obtained (using, e.g., a second order filter) when a certain control

u(k) is applied to the system. Let {zo(j)} be the nominal trajectoryI' N-
-v jk+l I )11-1obtained by applying the nominal control sequence {uo(j; _(k+lk)]}J

to the deterministic part of the system (4.1), i-e.,

z(5+l) [ (j+ - (j) 4(j) AA - 1W_ (j)u0 (j) .
-E (~l j 0(+i) [4i j [ A(D)(i Wj 47

.
0

where superscripts denote matrix partitions and

! ,(j) A[Jp (j)]

b (j) b _[Jo(J) (4.8)

with initial condition z (k+l) _A (k+llk). For simplicity, the dependence( -
on z(k+llk) will be suppressed and u0 [j, _(k+llk)] denoted $y u (j).

Define the Jacobian

- Iz w -

Z'0

A (i) 1 X M(AWt2'a j) b"O -e (j) b (j9

( i(j) f -I)J

A Since 8 enters linearly in A, C and b, their partials with respect to

_ are constants.



(S

The measurement vector in (4.1) can be written in terms of the augmented state

h(.) - [C¢Jo(j)) : 0] Z(J) (4.9a)

and its Jacobian evaluated along the nominal is

h [C(j)I X e x_ c ]; C(j) = C(J; 0(j)) (4.9b)

it iil

where a ' i-l,...,n and c i-l,...qm are the corresponding rows of

A and C, respectively. Similarly,

f (4.10)
- ( ) [b(j) ]

and b will denote the corresponding component of b.

Using the results in Section III, the approximate optimal cost-to-go

I* is given by (see also Appendix C)

I*[S(k+llk), E(k+llk), k+l] = Jo(k+l) + go(k+1)

1 tr{[,(k+ljk) - E_(k+llk+l)] Ko(k+1)
2 r{-0+Jk
N N-1

+ F u9/' 0 100) + I +1J - j£ lj~)3'(1 ~) (4.11)
0J-k+l

where

Jo (k+') "x• [(N) - pA(N)]' W(N)[x (N) -p£(N)]

N-1

E~ NOWi - P(j)j'W(j)
j - k + l -- --

+ 0) fUo[J; j(k+l Q)112 (4.12)

S ~~~~2 ~3~ 0 j ~+Ik]
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The cost. matrices corresponding to the augmented state z ~~ are
denoted by

0 on ) (4.13)

where On denol,.es an nXs zero matrlix and K (j), S (j) satisfy the backward

equations

0(Kj)~ ex e) K (4.14)
K (J) K (J)

+ W(j) ; KX(N) - W(N) (4.15)

0 0 --a-

v (J) {I [fx',) Kxx,(j+1) + DI(j) K x(j+1)Jb (J)-o -0 -

+[ xxF, Eil (j+1) b' (J) b'(j) (J+1) Ai} ;"J K8'(J) *0 (4.16)
J2-o

K Be(j) fx:!J K xx(~)f J + D'J K ex

fx0,2(J) K (J+'&) R(J) + D'(j) K e(j+i) D(j)

6-0

+ ~ 2 (J+1) b 0 (j)bt )( (+)f 0 i +

n

+ J± 'J4K0 1)(.7



u(J) b [X(J) + b'(j) K X(J+1) b O(i)] (4.18)

(00) -1 fj(j+1) - P (j)P(j) u (j) b4(l VD)];

so (N 0 (4.19)

'()- A4(J) X(J+1) + 5Wji)[ (J - 2 *(j)] - i(j) AII(J)

eKXX(~ b (J) rXIj u(J XJl j]

Y (N) - W (N) [2F(N) - p (N)] (4.20)

and Z (J+1 Ii), Z 0 (J+Ilj+1), the predicted and updated error covariances of

the augmented state satisfy the forward equations: (J-k+l,...,N)

40(j+1) - _E0 (j+1fj) ht (j4+1) [h (J+1) E (j lj h' 0j+1)

+ R(J+1)]J;j-k....,N-1 (4.21)

E£(J+ljj+l) =[I-V (J+1)h (J+l)E E(J+llj); J~k,...,N-l (4.22)

1(0 lj f~ j O,(J) + :(J) J-k+1,...tN-1 (4.23)

where1

0 *Q(j) 1(4.24)

The initial condition in (4.22) is ro(k+llk)- En(k+llk), the extrapolation

covariance obtained after applying u(k) to the system.
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4.4 Nominal Selection and the Computation of the Ofto-Step Dual Cost

In this section, the appropriate selection of the nominal control

sequence associated with each predicted state will be discussed along with

the detailed computation of the one-step dual cost.

One reasonable choice of the nominal control sequence u [J; z(k+l k)] N-l
0 -J-k~I*

would be the certainty equivalence control; i.e., this sequence is obtained by

solving the problem of minimizing

J (k+l) - ½[x (N) - p(N)]' W(N)[x (N) - p(N)]

N-I
+2 E {[4xo(J) - P(J)]' W(j)[xo(j) - P(j)] + x(J)[a( j)2} (4.25)

J=k+l - -

* subject to the constraints:

x (j+l) -A[J;o (j)] x (j) + bNJ; e (J)] u (j); x o(k+i) a (k•+ljk) (4.26)

e 0j+l) R (j) G, (j) ;e(k+l) - e^(k+llk) (.70 - 0 --

Note that 8 (J), J-k+l,...,N can be computed independently of how the control
-o

u0 (j) is selected. The solution for this optimization problem can be obtained
easily. fM2] The optimal control u*(J) is given by

*0

u0 "- "o ,) [2c,(j) + (j+l) (4.28)

where

7,,o(J) [A [(j) + b I. (j) Jr Q+l) bo(j)J- (4.29)

and (J+l),"o(J+l) satisfy

_o(j) - A )(j) Uo(j +l) b (j) b'( () ''A(j)~ - . -- a

+ +_(J) ; (N)) W (N) (4.30)

+ The squiggle here denotes quantities related to the certainty equivalence
control which determines the nominal trajectory from k+l to N.



(J) b(j)[I (J) J (j)] '( )

- V(J) -(0) ; 2 (N) w(N) .. (n) . (4.31)

The corresponding minimum cost is

J (k+l) - ½ i'(k+1Ik) Z (k+1) i(k+l k) + '(k+l) _•(k+1Ik) + o(k+1) (4.32)

where go(j) satisfies

Tow - -"o(J+i) - W Z(-+1) h,(j) b'(J) (•(+1)

+ 1 2' (JJ)IH(J) ; i'o(N) " ½ .2.' (N) W_(N) Ps.(N) • (4.33)

By comparing (4.30) with (4.15), we see that

'(DJ) -. (j) j - k+1,...,l N (4.34)

and hence from (4.18) and (4.29)

PoJ) - 70o(J) (4.35)

It is shown in Appendix D that

P'-(J) " (j) A0(j) + ",(J)
P-0 E 2-0(4.36)

From (4.35) and (4.28), we have

X(J) uo(j) +- (J+l) b .oJ) )X(j) uo(J) + 45(j) A0(J) Ko(j+l) b4(j)

+uo(J,) P(j) K o(J+l) b o(j) + %(J+l) how) , 00 -0 - (4.37)

Therefore (4.19) becomes

g 0 (j) - 0 ; J-k+l,...,N . (4.38)
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If we do not discretize the predicted state, the one-step cost can be computed

by the following procedures:

L. Obtain ^(k+l k), e(k+1Il), and L(k+l k) by

j(k+ljk) - Ak; t(kjk)] j(klk) + btk; 1(kjk)] u(k)

n
1+ tr(f' (I(kjk), u(k)]E'~(klk)} (4.39)

2 - X X

E(k+lIk) R D(k) _(kjk) (4.40)

E (k+ll k) z (k) K. (1(1k) f' (k) + ~2(k)

n+s n+s

jj2E÷ E E - t k_ . (-•k~f z (_ (ik . (4.41)
iul jul

2. Generate 20(j), j•k+l via the equation (4.27).

3. ComputeK
. u (j), 2o(j)o J-k+l,...,N using (4.30) and (4.31). Note

that these equations are a function of 0(kIk) only, and are
independent of u(k).

4. Generate x (J), Jak+l,...,N using (4.26) (with u (j) U *(j)) and0 0n

(4.28).

5. Comput K0( 88",..
5. Compute K (J), K 0 J k+l,,,N by (4.16) and (4.17). These

-0 -0are backward equations.

6. Form the matrix K (J), k+l,...N, using (4.14) and (4.34).
-- O

7. Compute Lo(j+l!i+l), j~k,..,,N-l, Z~o(j+ijj), j-k+1,...,N-l,

using (4.21)-(4.24).
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8. Obtain the one-step dual cost by

Jd[u(k)1 ? I (k) u2 (k) + ½'(k+l k) K(k+l) •(k+l k)

+ "o(k+l) ^ .(k+l I(k)

- N-1

J-k+l

+ [I(k+llk) - E0(k+l k+l)l (k+l)

F [E 0 [-(j+llj) - l-o(i+llJ+l)] K-o (J+1)1 (4.42)

j =k+l

4.5 Remarks

1. The minimization of (4.42) is done by performing a search for

u*(k). Since u is scalar, we can use the quadratic fit

optimization method described in Appendix B

2. The dual property of the control is revealed in (4.42) where

the one-step cost to be minimized includes both control and

estimation cost.

3. Let us partition the error covariance E--o

0- | 0 (4.43)

Then if E_60 (k+lik+l) -0, we must also have E X(k+llk+l) =0 andS-0- =
for large k the one-step dual cost becomes
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i0

Jd [u (k) hk)(k) (k) +1'(k+1Ik) (k+1) i(k+1jk)

Sic i+ £ x(kl Ik+l)k) +T O

N-i(to+ _ , ( k) ] (j+klj) - (J+j+1) (4)

Since if Eee(k+l Ik+1)1.

we have from (4.39)

,E(k+ljk) " A[k, i(kIk)] Xkjk) + blk., 1(kjk)] u(k) . (4.46)

Also, one can easily show from (4.21)-(4.24) that E (j+llj+l),-o
J=k,...,N-i, satisfy the minimum error equation of the linear

system with known parameters .(j)- "(Jlk). These imply that if

we have high confidence on the parameter estimate, we can assume

separation to hold.

4. The one-step dual cost reflects also the effect of the future obser-

vation program. For example, if it is known a priori that during the

interval £<JSN, 2kk, no observations will be made, then we would

have E0 (Jl J-l) -E 0(J J). In this case Ja[u(k)] becomes
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Jd[u(k)] " ¾(k) u2 (k) + ½ .9(k+l QO(k+l) 1(k+l 1k)

+ z(k+l) 2i(k+l k) + tr( H j) 4j+'Ii+"
J-k+l

N

7W~l -0

+ K (k+l)[(k+llk) E 0 (k+ljk+l)]

+E K -(J+l)[E a'(J+llj) - E-' (j+l1J+l)] (4.1,7)

Juk+2

therefore, tne knowledge that future observations will or will not

be taken would change the present control strategy. If future learning

will not take place, the present control tries to minimize the average

control performance, whereas if future observation will take place, the

present control will invest some of its energy to help the future

learning. It is in this way that the dual control regulates its

future learning under sowe control objective. Because of this "active

learning" characteristic we call this control strategy an actively

adaptive control.

5. The estimation cost of (4.42) is also a function of time-to-go. In

the beginning of the control interval, the estimation cost is rel-

atively high. The one-step optimal dual control must therefore be

selected so that it compromises between control and estimation purposes.

When k is approaching N-I, the estimation cost becomes smaller, and

thus the one-step optimal dual control will give less weight to the

estimation part and will finally concentrate on the control purpose.
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S6. For the case where the control u(k) is a vector rather than a

scalar value, one can obtain exactly the same equatIons as above

except that now V (j), Po (J) are matrices and care is required

in their placement in Equations (4.30)-(4.33) and (4.15)-(4.20).

In the vector control case, the search for the one-step optimal
i is more complicated since we are searching over a volume rather

than a line. Conceptually this does not create any new difficulty.

IT
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V. SIMULATION STUDIES

In this section, three example problems pertaining to dual control are

considered, the purposes of which are:

(1) To investigate the computational feasibility of the one-step

* optimal dual control algorithm.

(2) To compare this algorithm with another widely used suboptimal

algorithm -- the certainty equivalence.

(3) To understand the dual nature of the proposed algorithm; in

particular, to understand the learning purpose of the control.

The first -- the scalar case example -- will be a simple one, so that we may

understand the implications more clearly. The other two -- on interception

and soft landing -- will be more complicated and will give additional insight

into the dual control and some indication as to the computation feasibility

of the proposed algorithm.

5.1 Scalar Case Example

Consider a scalar linear system

x(k+l) - ax(k) + bu(k) + t(k)

y(k) x(k) + ?I(k) (5.1)

where a,b are unknown constants and w(k), v(k) are independent zero-mean

white noises with covariances q and r, respectively. The problem is to find

a control sequence fu*(k)}N'l such that the performancek-0

2 2 (k)1J (-S [ { x I(N) - P]2 +• r u (k

22k 
(5.2)

C 41
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is minimized subject to the constraint (5.1) and

u*(k) = u*(Yk ukl ( (5.3)

A comparison of the certainty equivalence (C.E.) control strategy, and

the actively adaptive dual control strategy as described in Section IV will
be illustrated.

Two cases are considered. For both cases, N 20, p -.5, C 1i00,

x(O) -O, a -0.8, b -0.5, q- 0.25, r- 0.04; the initial guesses are i(010) =0.13,

i(OlO) =1.2, 6(010) -0.3 with initial error covariance

X) 0.25 0 0
Cov { 0 0.04 0 (5.4)

SLb 0 Lo 0 .01454

In case 1, the observations are available for all k= 1,2,...,19; in case 2,

the observations are available at k= 1,...,14; for k k15, no observation is

available. It is impossible to see how close the dual control strategy

performance is to that of the truly optimum control strategy, since the

truly optimtum control strategy is very difficult to obtain. To give an

idea about the performance level of the dual control strategy, we shall

include the results for the optimal control when the parameters are all

known. The performance for this will serve as a lower bound. It must be

kept in mind that this lower bound is not achievable even by the truly
(

optimal stochastic control for our problem. Ten Monte Carlo runs were per-

formed for both cases, the results of which are shown in Tables 5.1 and 5.2.

The first Zolumn shows the results for the optimum control when the para-

meters are known.

From Table 5.1, we see that, on the average, the dual control is better

than is the C.E. control. An important fact here is that the dual control

performance has a relatively small deviation from its average performance

compared with that of the C.E. control. This property indicates that the

dual control is more reliable than is C.E. control under stochastic effects.
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TABLE 5.1

COMPARISON OF DUAL CONTROL WITH C.E.

CONTROL FOR THE SCALAR EXAMPLE (CASE 1)

STANDARD
AVERAGE AVERAGE AVERAGE RANGE DEVIATION

IMISS DISTANCE TERMINAL ERROR TERMINAL ERROR AVERAGE OF OF
SQUARED SQUARED IN a SQUARED IN b PERFORMANTCE PERFORMANCE PERFOPMANCE

OPTIMUM 0.0653 0 0 20.7 15.71-36.34 6

C.E. 0.311 0.126 0.233 34.7 22.11-70.43 17

UAL 0.219 0.125 0.228 32.0 22.04-48.40 10

TABLE 5.2

COMPARISON OF DUAL CONTROL WITH C.E.

3'CONTROL FOR THE SCALAR EXAMPLE (CASE 2)

STANDARD
AVERAGE AVERAGE AVERAGE RANGE DEVIATION

MISS DISTANCE TERMINAL ERROR TERMINAL ERROR AVERAGE OF OF
SQUARED SQUARED IN a SQUARED IN b PERFORMANCE PERFORMANCE PERFORMANCE

OPTIMUM 0.097 0 0 22.3 17.66-43.26 7

C.E. 7.353 1.609 .650 308.6 39.31-1882.5 561

UAL .143 .282 .258 74.5 66.6-113.36 13

4
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From the estimation performance, both the dual control and C.E. control

* perform well in terms of estimation at the terminal time, as shown in Figs.
5.1 and 5.2. Thus the fact that dual control performs better than C.E.
control must be related to how fast learning is being performed. In Fig.

5.1, the control histories are plotted for one particular sample run. In
this sample run, the noise sequences are the same for the optimal with
known parameters, C.E., and dual controls. If the parameters are known
exactly, learning is obviously not required and thus the control action will
have only the control objective. Notice that to achieve this objective,

the control energy should be kept small in the beginning and become larger
toward the terminal time. In general, the C.E. control has this character-
istic (the overshoots at about 10 and 13 are due to stochastic effects).

However, the dual control acts quite differently, namely, at the initial

time, the control value is quite far from zero. Thus, the dual control

allocates some energy which is not directly intended for the control
objective in the beginning.

In Fig. 5.2, the evolutio•t of the parameters estimated is plotted for
one sample run. As we notice in the figure, this energy is utilized for the

learning purpose, which indicates that in the initial period, achieving the

control objective and learning are in conflict. For k k12, the control

@ penergy is building up in order to achieve the control objective. Since

large control energy will excite the modes and improve the signal to noise

ratio, it will promote learning. Thus for k X12, learning and controlling

are not in conflict. This explains why the C.E. contr-l does have good

estimates at the terminal time. In this case, learning is "accidental."

To illustrate this point, we will see what happens if learning is not

possible in the final period. This is shown in case 2. Table 5.2 shows the

results of artificially terminating the final learning period. The C.E.

control does very poorly in estimation, and, consequently, very poorly in

achieving the control objective. This is reflected by the very large

average cost and its standard deviation. The dual control, on the other

hand, still performs reasonably well due to anticipation of the open-loop

period at the end.
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In Fig. 5.3, the control histories for another sample run with identical
noise sequeuce for dual control case 1 and case 2 are plotted. Note that at

the initial time, more energy is allocated to learning in case 2 than in
case 1. This is so because in case 2, the derivation of the dual control

takes into account that no learning is possible for k 115, and thus any

large control at the end will not help in learning; therefore, in order to
achieve good control performance, a large amount of energy must be invested

for pure learning purposes during the initial period to excite the system

and to improve the signal-to-noise ratio. This is illustrated by Figs. 5.3,

5.4 and 5.5. As a result, the dual control achieves a much lower average
cost and, at the same time, a much more reliable control strategy than does

the C.E. control.

This active learning characteristic is a distinguishing feature of the

dual control strategy, which depends not only on past observation infor-

mation but also on the future observation program; therefore, the control
value will differ depending on whether or not future observations will be
made. Note that such a feature is not possessed by any of the existing

suboptimal schemes suggested in the literature.

In the scalar example, a second order filter is used for on-line

estimation of state and parameters. This estimation scheme is quite

effective. Clearly, one may expect better performance if one uses a more
[B3],[T3],[A3]sophisticated estimation algorithm; e.g., via parallel filters

One important point to be stressed is that the dual control strategy

tries to improve the performance by considering what should be done

before as well as after the parameters are identified, whereas the C.E.

control strategy only tells what should be donf. aft:er the parameters are

identified.

5.2 Interception Example

In this subsection, the interception problem will be investigated.

Consider a third order system

x(k+l) A(6 1 ,0 2 '03 )x(k)+B(6 4 ,0 5 ,66 )u (k) +<k) (5.5)

y(k) (0 0 1];(k)+q(k)
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where

r 104
eI e2eI'00 1B(e 4 0, 6  - (5.6)

6 L(01,22 363) L Le6 6

and {6.} 16 are unknown constant parameters with normal a priori statistics

having mean and variance

6 (olo) = (1., -. 6, .3, .1, .7, 1.5]'

z_ 0(olo) - diag(.1, .1, .01, .01, .01, .1)

The true parameters are

0 - [1.8 -1.01, .58, .3, .5, 1.]' . (5.7)

The initial state is assumed to be known:

(0o10) = x(0) 0 . (5.8)

i The objective is to bring the third component of the state to a desired value.

This is expressed by the cost
=1 N-1

J E{[x3 (N)-P] 2 + u2 ) (5.9)
i=0

where p is some value and A is chosen to be small. In our example p=20 and X is

chosen to be 10- 3 . The noises {ýi(k)}13 and n(k+l) are assumed to beJ=be

I independent and are normally distributed with zero mean and unit variance.

If we interpret x3 as the position of an object, then this example corresponds

to an interception problem: the guidance of an object to reach a certain

point, without constraints on the velocity and acceleration of the object

S{when it reaches that point. The difficulty lies in the fact that the
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poles and zeroes of the system are both unknown. The initial condition (5.7)

represents the fact that the system is initially at rest.

Twenty Monte Carlo runs were performed on the interception example and

av,.rage performances are summarized in Table 5.3 and Figs. 5.6-5.8. The

performance for the optimal control when all the parameters are known is

included to serve as a lower bound for the truly optimum performance for

this proble'4. Again, it should be emphasized that this lower bound i3

unachievable cren by the optimum stochastic controller for the system with

unknown parameters.

As shown in Table 5.3, the dual control performance is an order of

magnitude better than the C.E. control. The second and third rows indicate

that the dual control performance is highly predictable, compared with the

C.E. control. Note that the dual control uses only about twice the energy

of the C.E. control, at the same time achieving a dramatic improvement in

the miss distance squared over the C.E. control. This indicates that the

dual control does use control energy at approrpiate times to improve learning,

and thus achieves a satisfactory control objective.

Note that in Fig. 5.8, the dual control invested at the beginning

considerable energy in learning. The effect of this is revealed in Figs. 5.6

and 5.7, where the average error squared for the parameters' estimates are

displayed. Note that the learning in 84, V 5, and 06 is much faster than the

learning in 01, 02, and 0 As discussed in Section 3.4, the learning of

04, 05, and 06 results from the fact that large control will improve the

signal-to-noise ratio for these parameters and thus the control can help

in learning them in one step; on the other hand, the learning of 81, 020

and 03 is accomplished by exciting the modes of the system, and thus

learning would be delayed until the system is properly excited.

Note that the C.E. control provides fairly good learning in 01, 02,

and 03, but practically no learning in 04, 053 and 06. Note also that the

C.E. control builds up energy very quickly after the tenth step. As observed

in Fig. 5.7, some learning is 04) e5 , and 06 is performed for k •I0, but
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* TABLE 5.3

SUMMARY OF RESULTS FOR THE INTERCEPTION EXAMPLE

CONTROL OPTIMAL CONTROL C.E. CONTROL DUAL CONTROLCONTRO WITH WITH WITH
POLICY KNOWN PARAMETERS UNKNOWN PARAMETERS UNKNOWN PARAMETERS

AVERAGEVRT6 114 14
COST

*D MAXIMUM COST
IN A SAMPLE OF 20 458 53

TWENTY RUNS

STANDARD DEVIATION 140 16
* OF THE COST

EXPECTED MISS
DISTANCE SQUARED

WEIGHTED
CUULATIVE

CONTROL ENERGY .1 1.4 3.2
PRIOR TO

FINAL STAGE

5

I

V
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prior to k -10, practically no control is applied and thus in 64, 05, and

06 no learning is done. The learning in 61, 02, and 03 before k-10 is due

to the process noise, which serves as a random input that excites the modes

of the system. Thus in this case, the learning is 61, 62, and 83 is quite

accidental; also because this learning is too slow, it is of little use in

achieving the control objective.

5.3 Soft Landing Example

Consider the same oyptem with the same a priori conditions as discussed
* in Section 5.2. The only difference is that instead of bringing only the

third component of the state to a desired value, the objective is to bring

the final state to a certain point in the state space. This is expressed by

aI. - p [x+)N- 2( (510

" E{[(N)(N) - + I A u (5.10)i-0

where p is a point in R3 and A is chosen to be small. This may be interpreted

as a soft landing problem by selecting the p vector to beI'
0-

P 0 (5.11)

and A - 10'-3. Comparing the results of this problem to those obtained in

Section 5.2 will provide more insight into the dual nature of the control.

Twenty Monte Carlo runs were carried out for the C.E. control, the dual

* control, and the optimal control with known parameters. Again, the last-

mentioned serves as an unachievable lower bound to the optimum performance.

The rasults are summarized in Table 5.4 and Figs. 5.9-5.11.

Conceptually, the soft landing is a "harder" problem than the one con-

sidered in Section .2. Here, we want to "hit" a point in the state space,

while in Section 5.2 we wanted to "hit" a surface. Therefore, it should be

expected that the average cost is higher than in the previous example.
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TABLE 5.4

SUMMARY OF RESULTS FOR THE SOFT LANDING EXAMPLE

CONTROL OPTIMAL CONTROL C.E. CONTROL DUAL CONTROL
POLICY WITH WITH WITHKNOWN PARAMETERS UNKNOWN PARAMETERS UNKNOWN PARAMETERS

AVERAGE 15 104 28
COST

MAXIMUM COST
IN A SAMPLE OF 35 445 62

TWENTY RUNS

STANDARD DEVIATION 9 114 11
OF THE COST

EXPECTED MISS 28 192 32
DISTANCE SQUARED

WEIGHTED
CUMULATIVE

CONTROL ENERGY 1 7 12
PRIOR TO

FINAL STAGE
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This is seen to hold true, as shown in Tables 5.3 and 5.4, for the dual

control and the optimal control with known parameterb. However, for C.E.

control, it does not hold true. This may look strange at the first sight,

but careful analysis of the simulation results will offer an explanation

for this.

In the following, the results of this example are examined in more

detail, later, the comparisons of this example and that described in Section

5.2 are made.

Table 5.4 indicates the improvement of dual control over C.E. control,

both in average performance and reliability. The terminal miss distance

squared for the dual control is very close to the unachievable lower bound

given by the optimal contrbl with known parameters. To achieve this small

miss distance, the dual control invests considerable energy for learning

purposes. This can been seen in Fig. 5.11 where it is shown that a large

amount of energy is invested at the initial time to promote future learning.

As a result, the parameters are estimated very quickly (in about eight steps).

After the parameters are adequately learned, the dual control smoothly hits
the final point p <see Fig. 5.11). Again, note the delay in learning the

parameters e1, 82, and 03.

The C.E. control, on the other han:, being only passive in learning,

learns much slower, with the result that the terminal error is an order of

magnitude higher than that of the dual control. As a consequence, the miss

distance squared is substantially larger than that of the dual control. The

C.E. control learning in 0lV 82, and 03 is enhanced by the process noise,

whereas the learning it 04, 5, and 06 is regulated by the control. In the

C.E. case, this is very small in the initial period and builds up very

quickly after time eight. Notice in Fig. 5.10 that the C.E. control did

quite a bit of learning after time eight, but this learning is passive.

To understand the passive and active learning of the C.E. and dual

control, the results of the soft landing example and the previous example

will be compared. First compare the two C.E. controls. Note that the C.E.
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control energy used in the soft landing example (we shall call this the

second example) is much more than that used in the interception example (we

shall call this the first example). Note from Figs. 5.9 and 5.11 that up to

about k-12, the C.E. control uses about the same cumulative energy

for the two examples. The fact that the final mission is different has not

yet become important enough to change the control strategy. As a consequence,

the learning for both cases is almost &he same up to this time. In the first

example, since the final destination is a surface, the controller can wait

almost until the final time to apply a control to achieve the control objective,

and therefore the C.E. control is still applying little energy after time

twelve. The learning of the parameters 840 85, and 86 is only slightly

improved. However, for the second example, since the final destination is a

point in the state space, the control must work "harder" to achieve its

objectiv- (transferring from one point to another arbitrary point requires

three time units). Therefore, the control energy after time twelve increases

very quickly for the second example. This results in a much better estimation

on the gain parameters. Since the learning in the first example is poorer than
in the second example for the C.E. control, a higher cost is accrued in the

first example than in the second. Note that even though the second example is

a "harder" problem, a better performance value is obtained. This is primarily

because "accidental" learning is enhanced by the difficulty of achieving the

final mission.

For dual control, quite a different control strategy at the beginning

rather than at the end of the control interval can be noticed. The fact

that a different end condition has to be fulfilled is propagated from the

final time to the initial time. For the second example, the dual controller,

realizing that the final mission is much more difficult to achieve, decides

to invest taore energy in the beginning, because learning is very important in

this case to achieve a satisfactory final objective. Note the "speed" of

learning in the second example compared with the first example (see Figs. 5.6,

5.7, 5.9, 5.10). The dual control regulates its energy in learning: in the

first example where learning is less Important, it does not insist in learning

by applying large controls in the beginning; in the second example, the

learning is much more important and thus more energy is utilized for the learn-

ing purpose. For both examples, the expected miss distances squared are
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comparable, thus, the increase in cost in the interception example is primarily

due to the increase in accumulative input energy. This demonstrates the active

learning characteristic of the dual control.

5.4 Remarks

(1) A comparison of the computation time required by the dual control

with that for C.E. control gives some idea of the computation;

feasibility of the proposed algorithm. For the scalar example, the

dual control requires, on the average, about twice as much time as

the C.E. control per time unit. Note that in this example, we
actually have a 3-dimensional problem. For the other two examples,

it was found that the computation time for the dual control is on

the average, approximately seven to eight times that of the C.E.

control. Here, we actually have a 9-dimensional problem.

However, judging from the improvement over the C.E. controi, the

extra computation time is worthwhile.

Note that the relative time between the dual control and the C.E.

control increases as we have a higher dimensional problem. This

is due to the fact that with higher dimension, the computation of

the approximate optimal cost-to-go is relatively more time consuming.

Thus for applications to classes of problems with high dimension,

some improvement of the present algorithm is needed.

(2) The C.E. control is actually a very crude suboptimal method. More

sophisticated algorithms have been suggested in the literature[L2 ].

One suggested approach is to have weighted C.E. control. This

control is obtained having a bank of Kalman filters tuned at

different parameters which adequately cover the parameter set, and

an "optimal" (which is actually a C.E.) control generated for each

Kalman filter in the bank, and finally all these controls are

combined in a weighted manner. We must stress that this'strategy

does not possess active learning, and thus we would expect

behavior similar to that in the C.E. control examples, probably U

with some improvement.
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As seen from the aboire examples, active learning is the main

characteristic which will yield a satisfactory performance, and

therefore one can predict, with high confidence, that assuming the

on-line estimation algorithm to be the same, such a suboptimal

algorithm will be inferior to the dual control presented above.

Moreover, if a serial computer is used, the computation time for

the weighted C.E. approach would be equal to L times the C.E.

approach computation time (both assume using the same estimation

algorithm), where L is the number of Kalman filters. If there are

six parameters, and each is quantized into only two levels, we

have a total of 26 Kalman filters, and thus the computation time

is about 65 times the C.E. approach computation time; this is much

more time-consuming than the dual control approach.

The use of parallel computers may reduce the time for the weighted

C.E. control approach, since this control law is parallel in

structure. On the other hand, careful study of the present algorithm

may show that it also possesses a parallel structure, though not in as

obvious a manner.

(3) The active learning feature of this algorithm distinguishes it

from the other approaches in the literature. The examples not only

demonstrate that the dual control gives good performance, but more

importantly it illustrates why it gives good performance.

(4) The present algorithm can be modified and refined so that it can

eventually become feasible for real-time computation for a large

class of problems. This is discuqsed further in the next section.

(5) The present algorithm can be used as a base for evaluating and

comparing the performing of different ad hoc suboptimal algorithms.

Even though the algorithm is still suboptimal, because of its

active learning characteristic, it is felt that the algorithm is

quite close to yielding the optimum performance.
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VI. POTENTIAL APPLICATIONS AND SUGGESTIONS

FOR FUTURE RESEARCH

In this section, different classes of problems that are potential

fields of application for the dual control theory developed in this study

are indicated, and suggestions are made for areas of future research that are

direct extensions of this work.

6.1 Applications

The dual control theory is applicable to general adaptive control problems

where learning of the unknown environment and/or the state and parameters of
the system under control is important in obtaining a good control strategy.
The concept of active learning, which is introduced and developed in this

study, is most important for these problems. Some of the problems that might

benefit from the application of the dual control theory are listed below.

(1) Automatic Landing System -- The objective here is to bring a plane,

approaching a land base, tV land safely as quickly as possible.

This requires knowledge of the position, velocity, and acceleration

of the plane, as well as some unknown parameters (perhaps due to

battle damage, imperfect preflight adjustment of the autopilot

sensitivities, component degradation) in order to perform a safe

landing.

(2) Interplanetary Missions -- Here, learning of the unknown environmental

parameters is needed for controlling the vehicle.

(3) Low Altitude Missions -- In the final stage of a low altitude mission,

an aircraft might want to fly higher to gain information; on the other

hand it will be more exposed to enemy detection. In this situation,

a tradeoff between gaining information and safety of aircraft exists

and must be regulated.
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(4) Homing Interception -- A homing interceptor equipped with a con-

formal array of an on-board radar is described in Fig. 6.1. From
the figure, it can be seen that there are larger measurement errors

for the head-on line-of sight. After collecting information about

the position, velocity, and acceleration of a target from the on-

board radar, the homing interceptor is to guide itself attempting

to intercept the target. Thus starting toward a target with

uncertain position and velocity, the interceptor must follow some

trajectory that will perform active learning in order to increase

the probability of successful intercept.

6.2 Future Research

The results obtained in the initial effort toward the "practical"

stochastic control theory open up new areas for future research where the

concept of actively adaptive control should play a central role. These new

areas are outlined below.

(1) Improvement of Present Solution Procedure -- The method developed

in this study is still not practical for some classes of problems

where the dimensionality of the state and control vectors is large.

Efforts should be spent in modifying and improving the present

method so that it becomes tractable for a much larger class of

problems. The approach would be to study carefully the present
method and use it as a reference in obtaining simpler algorithms

which retain the active learning feature.

(2) Free End-Time Problems -- Only fixed end-time problems have been

considered in the present study. But in many practical situations,

e.g., interception and soft landing, the final time is not pre-

specified but is chosen in some optimum manner. Therefore, after

having gained understanding on the fixed end-time, the free end-

time problem should be studied. The concepts and tools developed

in the present study can be easily extended to become applicable

to the free end-time problem.
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(3) Control and/or State Constraints Problems -- Throughout this study,

no constraints on the control and the state were assumed. But,

in actual applications, this assumption shoild be relaxed.

Extension of present results to this class of problems is not

straightforward but the concept of active learning will be helpful

in both formulation and method of solution for this class of

problems.

(4) Measurement Control Problems -- A large class of control problems,

not directly covered by the classical theory of stochastic control,

is the measurement control problem. This class of problems takes

the general form of the block diagram shown in Fig. 6.2. The

unique feature of the diagram is the measurement control which

specifies how and when measurements are made. If the plant and

the measurement systema are both linear and the cost is quadratic,

Meier, et al !M3, and Kramer[KI] showed that optimum measurement

control affects only estimation and therefore, solved the problem

via the separation principle. Such a result corresponds to the

classical stochastic control of linear systems with quadratic

criteria, where the optimal control has only a control purpose

and the solution can be solved by the separation theorem. In

the general nonlinear situation, both the measurement control

and the plant control have the dual properties of trying to improve

estimation and control. For this reason, the problem is called the

dual measurement control.

Examples of dual measurement control problems arise in many

Air Force problem applications. Three important cases occur when

there are constraints on the total number of measurements allowed,

when there are constraints on the types of measureuents made, or

when there are costs associated with making measurements. In the

first situation, which occurs when there are only finite resources

available to make measurements and each measurement uses up a

given amount of resource, an optimal scheduling of measurements

in real time is sought. The second eituation is illustrated by a
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radar with limited peak and average power. Within these constraints

the quality of position (range) and velocity (doppler) measurements

cLna be traded off by varying the radar pulse shape. In the third

situation, a good example of measurement cost is when the use of

a radar will gain information about an enemy but will also give the

enemy information about the radar location. In this case the

information given to the enemy may be represented as a cost of

making the measurement that must be traded off with the benefits

of making those measurements.

For this class of dual measurement problems, the concept of

active learning is very important. The understanding gained in the

present study will provide a fundamental framework for future study.

(5) Dual Control and Input Design for Identification--This study

was concerned with the controlling of a system where learning of

parameters is only an indirect objective. Part II of this con-

tract, [M51 is concerned with learning unknown parameters where

controlling is only an indircat objective. Therefore, these two

separate problems are actually two faces of the same problem. It

would be of interest to investigate the interrelation of these two

problems.
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VII. PUBLICATIONS UNDER THIS CONTRACT

The following publications are results from Part I of this contract.

(1) "Dual Control of Stochastic Nonlinear Systems," by E. Tse,

L. Meier, and Y. Bar-Shalom (1971 IEEE Decision and Control

Conference, Miami Beach, Florida).

Abstract

adIn stochastic control of nonlinear systems, estimation

and control are dependent--the control, in addition to its

effect on the state of the system, affects the estimation

performance. A method for obtaining a dual control sequence

is discussed that leads to a one-step optimization problem

and a control strategy called the one-step dual control.

An example problem is used to indicate the performance im-

provement when using the one-step dual control instead of

1 *the separation control policy.

(2) "On the Dual Control of Stochastic Discrete-Time Systems,"

by E. Tse, A. J. Tether, Yý Bar-Shalom, and L. Meier (Fifth

International Hawaii Conference on Systems Science, Honolulu,

January 1972).

Abstract

The dual nature of the control for stochastic nonlinear

systems is stressed in formulating a stochastic control problem.

Two methods for obtaining dual control sequence are discussed.

The first method is the off-line optimal nominal selection,

the second is called the one-step optimal dual control. An

example is given which indicates '-hat the one-step optimal dual

control has great improvement over the control strategy obtained

by imposing separation.
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(3) "Wide-Sense Adaptive Dual Control of Stochastic Nonlinear

Systems," by E. Tse, Y. Bar-Shalom and L. Meier (to appear

in IEEE Trans. on Automatic Control).

Abstract

A new approach is presented for the problem of stochastic

control of nonlinear systems. It is well known that, except for

the Linear-Quadratic problem, the optimal stothastic controller

cannot be obtained in practice. In general it is the curse of

dimensionality which makes the strict application of the principle

of optimality infeasible. The two subproblems of stochastic

control, estimation and control property, are except for the

Linear-Quadratic case intercoupled. As pointed out by Feldbaum,

in addition to its effects on the state of the system, the control

also affects the estimation performance. in this paper, the

stochastic control problem is formulated such that this dual property

of the control appears explicitly. The resulting control sequence

exhibits the closed-loop property: it takes into account the past

observations and also the future observation program. Thus in

addition to being adaptive, this control also plans its future learning

according to the control objective. Some preliminary simulation results

illustrate these properties of the control.

(4) "An Actively Adaptive Control for Linear Systems with Random

Parameters via the Dual Control Approach," by E. Tse and

Y. Bar-Shalom (submitted to 1972 IEEE Decision and Control

Conference; also to be reviewed for IEEE Transactions on

Automatic Control)

Abstract

The problem of controlling a linear system with random

parameters is being considered. An algorithm is obtained which

seems to be appropriate in computational fea3iblity for this

class of problems. The algorithm possesses active learning

characteristics in the sense that it regulates its adaptation

(learning) in an optimum manner. Simulation studies are carried

out in terms of two third--order examples. The example problems
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provide additional insight into the active learning characteristic

as compared to the passive learning possessed by certainty equiva-

lence and many other suboptimal algorithms.

The following publications are supported partially Ly this contract.

"(1) "Parallel Computation of the Conditional Mean State Estimate for

Nonlinear Systems," by E. Tse (The Second Symposium on Nonlinear

Estimation Theory, San Diego, 1971).

Abstract

This paper discusses an approach for approximating the

conditional mean state estimate for nonlinear systems. The

approach is motivated by realizing that some recent advances

in computer organization, in particular parallel processing,

could be used to reduce the computation time if the problem

is appropriately formulated. It is shown how the estimation

problem can be formulated properly so that this advantage can

be utilized. Specific approximation methods are described in

some detail.

(2) "Modal Trajectory Estimation and Parallel Computers," by

R. E. Larson and E. Tse (The Second Symposium on Nonlinear

Estimation Theory, San Diego, 1971).

Abstract

For nonlinear estimation, different estimation methods

are appropriate depending on the estimation criterion being

used; and different sufficient information statistics must

be updated and stored in real time. For modal trajectory

state estimation, i.e., estimation of the maximum likelihood

trajectory in state space, the problem can be solved using

the idea of dynamic programming; in this case the optimal

return function serves as the sufficient statistic. Since

there are a number of parallel operations that occur in the

evaluation of the dynamic programming recursive formula, the

the use of a parallel computer could greatly reduce the com-

puter time and memory required for obtaining the modal trajectory



estimate. The purpose of this paper is to discuss the

modal trajectory estimation method and how various algorithms

for implementing dynamic programming in a parallel processor

can be used to reduce the computational burden.

(3) "The Third Order Extended Kalman Filter," by L. Meier (The

Second Symposium on Nonlinear Estimation Theory, San Diego,

1971)

Abstract

The Extended Kalmdn Filter accurate to the third order

about a nominal is derived and compared to the extended

Kalman filter accurate to second order. It is found that

to be accurate to third order the covariance equation must

bef solved in real time; whereas for second order accuracy

it may be solved a priori.

(4) "Parallel Computation of the Modal Trajectory Estimate,"

by R. E. Larson and E. Tse (Fifth International Hawaii

Conference on Systems Science, Honolulu, January 1972).

Abstract
For modal tr-Jectory state estimation, i.e., estimation

of the maximum likelihood trajectory in state space, the
problem can be solved using the idea of dynamic programming.The purpose of this paper is to discuss various algorithms

for implementing the dynamic programming equation on a parallel

computer. In particular, the following algorithms are exam .. ed:
Parallel States Algorithm; Parallel Noises Algorithm, and Parallel

States and Stages Algorithm.
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(5) "Parallel Processing Algorithms for Modal Trajectory Estimation,"

by R. E. Larson and E. Tse (1972 JACC and to appear in IEEE

Transactions on Automatic Control).

Abstract

For modal trajectory state estimation, i.e., estimation of

the maximum likelihood trajectory in state space, the problem

can be solved using the idea of dynamic programming. Since

there are a number of paralle_ operations that occur in the

evaluation of the dynamic programming recursive formula, the

use of a parallel computer could greatly reduce the computer

4 time and memory required for obtaining the modal trajectory

estimate. The purpose of this paper is to discuss the modal

trajectory estimation method and how various algorithms for

implementing dynamic programming in a parallel processor can

be used to reduce the computational burden. In particular,

the following algorithms for implementing dynamic programming

i in parallel processors are examined: Parallel States Algorithm,

Parallel Noises Algorithm, and Parallel States and Stages Algorithm.
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Appendix A

THE OPTIMAL PERTURBATION CONTROL

Denote the optimal incremental cost-to-go by

AJo (Yj,j) = min E{ min E[... min E(MJ (yN, N)IyN-I)I...yiJ+l]Yj}
S6u(j) 6u(j+l) 6u(N-l) 0

(A.1)

The alternating minimizations and expectations in the above reflect the

closed-loop property jf the control.[B2 ].. The principle of optimality leads to

J* (yi~j) -- mijL' (J)6(j 1j) +1o (jlj) L (J)6x(j[j)
0 6u(j) o0x oxx -

+ (J)6u(i) + Tu (1) 0) 6u(j)+1tr [Lo (E_.I )
0(J) - 2 ' + (j)±(J Eo,~ cii J LJ IjJ)

+ E[LJ*(Yi+l'j+l)Iy] (A.2)

The covariance E (D iJi) is propagated, independently of the perturbation--o

control, according to the extended Kalman filter equation. (See also

Section 3.2.)

Take AJ *(Y ,j) of the form
0

AJi y, 'J) = go (J) + , )m-xi 1j) +2I4 (j lj)Ko(j)6x(j_ 1j) •(A.3)

00 (A.3)ý

Substituting (A.3) into (A.2), the minimization of the right-hand side of (A.2)

is obtained by letting

jT4t (k) +A6u (k), uu (k)6u(k) +(4.(k+l)6i(k4lIk)

+7 6x (k+ilk)K (k+l)6x(k+l1 k)= (A.4)



where to second order,

cx(j+llj)_- f (j)6x(j j) +f (J)u(j)_+.I tr{f+,• (j) __ E i)

n
{[s.•,(J). (J1J) ]I + I - J _f (JE 6L(j, )

-Ci~ll o ,_ux

+ n

2 fj)f o,_u) W _U(J) (A.5)

Substitute (A.5) into (A.4) and retain terms only up to second order; the
optimum 6u(J) is given by

n

by u )g t def o(-) of, (J), (3+1 ,o )+ t eoq•utiios f or __(j ) -

' n

Q' g ,(J)K-(J+l)f, 0)) + [ u (J+i)etif Wl(i)] )_-' _- -1'x 1-o4 -1oux_

1

+ fo u()4(+l) +ý WouJ)} (A.6)

Substituting (A.6) and(A.3 nt (nA.2) (keeping only up to second order terms)
and equating terms in zeroth, first and second order of 6i(k~k), one has,

by using the definition of Ho(J), (3.10), the equations for ^oJ,£()

0 gooX4X)

and K (J)

+,, i H,()H 0 + f-o (J)K--'o(J+l)f-u (j ]-1

HiJ - r[ (J)E.. (j IJ) + [Z.. (J+l lj) -_. .*J,.Ilj+I)]K_ (J.tI)}Ho'u.2 +2 tr{'x x -0 -0-0--

1

io (N) = tr 14[ x o (N IN)] (A.7)
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0)= H (J) - [f'- (J)K (J+l)f (J) +H (0) ]
Ox 0,u -0 -o~x 'X

[H (j) +f' (j)K (J+l)fu(J)]-Ho(j) ;0 (A.8)

-o (u ( x [ j J f-x( Houx
K~~~~~ (j(fj)]( +) -[

. [H (j)+f t  (J)K (J+l)f (j)] 1-
O-Uu, -o -o,u

' [f-u (J)K-(J+l)f _•(J)+H (j)]+H (J) ; K (N) - x (A.9)
oux o,xx --V

The resulting optimum cost if U (k,N-1) is selected is thus given by
0(note that 6i(klk) = 0)

J*[k,U (k,N-1)] = J (k) +AJ*(yk,k) = J (k)+j (k) (A.10)
00 0 0 0

To stress the estimation performance reflected in J*[k,U (k,N-l)], define
09g (j),J=k,k+l,...,N according to

0

go(j)=g(J+l)-Hou [ou(j) u (j) +f' (J)K (J+l)f (J)]-H_ u )
o'u ouu -_o'u 1-o -o'u _

9 g(N)m0 . (A.11)

Then by (A.7), (A.10), (A.11), J*[k,Uo (k,N-l)] can be expressed alternatively

as

1 N-l
J*[kUo(kN-l.]!=J (k)+go(k)+•-tr fýox (NIN)+ I {H (J)Eo(j)"0- 0 0 2 0J~k o'Xxx -

+ [E-o (J+l I J) - Z-o (j +11 j 4-1) lKo0 (J+l)1} (A. 12)

In the one-step dual ccntrol consideration, for j Zk+l, only perturbation
analysis will be carried out along the vth nominal, thus the cost of applying
u(k) can be approximated by
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I d[R~)] E{44u(k),k] +L~x(k),k] +J (k+l) + 9 (k+1)

+ D(k+1) 2^ kk+l I k.+1 -2E (k+1)]I

+ ^ j(k+1Ik+1) -_x, (k+1) I'K 2 (k+1)fi(k+l Ik+1)

-E x(k+l) lyk) .(A.13)

Equation (3.28) caui now be obtained by noting tnat

E{ý(.R(k),kj +j v(k+1) + g (k+1) IYk} *(!(k),k] +Ji (k+1) +g v(k+1)

E( 4(k+l) (j(k+1 Ik+l) - x, (k+1)] ~y} ,(k+1) Lx (k+lI k) - x. (k+1)J

E{[j(k+llk+1)- x (k+1]'K (k+1)[i(k+ljk+1) k~k1]I
--v -V (~)I

lkt(k+1Ik) -x Ck+1YII( (k+1)Ec(k+ljk) -x (k+1)J
-V --v --

+ tr {K (k+1) [E(k+l k) -E(k,+l k+1)J .(A1)
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'4 Appendix B

THE QUADRATIC FIT OPTIMIZATION METHOD

The method to find the minimizing augument u* of a convex function f(u)
with a quadratic fit is described below. At the kth iteration one has the
function evaluated at three points u', i-i,2,3. The corresponding values

are

f(k) fA (k) (B.1)

Assume these points are ordered such that

U(k) <U(k) <U(k)(B2
* <1 u2  < 3 (B2

The convexity condition is

(u2-u 1 )f 3 + (u 3-u 2 )f 1  (B.3)
2 u3-u1

The quadratic fit has its minimum at

(k) (k) k)

where

F[uisfii-l,2 3 l 1 12 al3 f 13 a12
2 f 1 2 b 1 3 - f b1 (B.5)

and

f fj f f-f (B.6)

A 2 2
a u u, (B.7)
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b j ui-uj . (B.8)

The three values f(k) will satisfy one and only one of the following sets
i

of inequalities (this is a consequence of (B.3))

fo >f2 and f3 >f2 (B.9)

or

f >f > f (B.10)
or

f3 f < f (B.11)

1 2 3

If (B.9) is satisfied then

u (k) < (k) <u (k) (B.12) o
1 4 3

The new point u4  will in this case satisfy either

( k) (k) (k)
.-- ••or

""u u < u ()< U(k (B.14)
U2  U 4  U 3  (.4

and the value of the function at the new point is

f4 < f2 (B.15)

or

f4 > f2 (B.16)

The procedure to choose the new set of three points is as follows,

depending on which of Eq. (B.9) through (B.I1) is satisfied.

I. Equation (B.9) is satisfied:

If {(B.13) and (B.15)} or {(B.14) and (B.16)} are satisfied, then the

new set of three points is

k+l A <u(k+l) 2 ord{u(k)}
U <Ui >i=1,2,3 jr~ 1 J03 (B.17)



where ord{.} stands for ordering in the sense of (B.2).

If {(B.13) and (B.16)} or {(B.14) and (B.15)} are satisfied, then

Uk+l = °rd{u (k) (B.18)

II. Equation (B.10) is satisfied. The new set is given by (B.18).

III. Equation (B.11) is satisfied. The new set is given by (B.17).

The search will stop when

1u4_-u21 -< C(u 4) =A max[c llu4lc2] (B.19)

The algorithm ccn be summarized as follows:

1. Given the first three points (ordered), evaluate the corresponding

values of f.

2. a. Set k=O

b. Check for convexity (B.3). If convex, go to 3.

Otherwise

u4 = u2 + 2 k lu3 - u2 1 sgn (J 2 - J3 )

c. Set k k+l. Go to 2b.

3. Compute u4 using (B.4).
4*

4. If (B.9) is satisfied and also (B.19), set u* =u 4  and

exit. Otherwise evaluate f 4 "

5. If (B.9) is satisfied use procedure I and then go to 2.

Otherwise go to 6.

6. If (B.10) is satisfied use (B.18) and then go to 2.

Otherwise go to 7.

7. Use (B.17) and than go to 2a.

8/
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Appendix C

THE APPROXIMATE OPTIMAL COST TO GO FOR LINEAR SYSTEM

WITH RANDOM PARAMETERS

Define 1 0(j) by

H(j) [x (J) - P(j)]' W(j)[x (J) - (j] + X(j) u2(j)a 2j -0 --a 22C) +Xj

+ 4(+l) f[j; x (j), u (j)] . (C.1)

0•-__+ Partitioning .2o into two parts, p•o and p_. oi dimensions n and s respectively,

we have Al11
11-(j) ( tx (J) - (j)' ( W (j) ) -( () _ (i)] + (j) u2 (j)

,+ o (J+l) [A(J) x (j) + bo(j) u 0()]

ofo
S+ 4 (%J+l) R(j ) 00( . (C. 2)

Using the formulae in Section I , we have the following partial derivatives

H ,x(j) = W(j)[2, (j) - p.(J)] + A; (J+l) (C.3)x:o_ . -..X[a oj
nH° -(J) = x~E['. (j+l)] [a (J) _xo(J) + b_() U (j)]

.••+ D' (j) (j +l) (C. 4)

Ho~(J) = X(J) uo (j) +o (Xl, b• (C.5)

H • o,.(j) = _w(J) (C.6)

-- i=l

H *e_(J) = H' (j) (C.8)Oe X ,__



R 0,600) -- 
(C.9)S"o H )- o

So,ux - (C. 10)
n

- (C.11)

Equations (4.11)- (4.20) are obtained by substituting (C.3)- (C.11) into
(A.7) - (A.9). Note that (j) does not appear in the computation of K o(j),
4 (J) and go(j), therefore its equation is not given in Section 4.3.

•4
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Appendix D

PROOF OF EQUATION (4.36)

It can be easily seen from the end conditions in (4.20) and (4.31)

that (4.36) is satisfied for j -N, Now assuming that

x (J+1) -'(J+1) - -K (J+1)x (J+l) (D.1)

it will be shown that (4.36) holds. From (4.20) and (4.31), one has, making

use of (4.34) and (4.35)

A Inserting (D.l) into (D.2) and then using (4.26) yields

+ --W(j)x-o (J) - o(J)A +(j)-(J+1)-(J)A(J)U(J)

+-{A'(J) [I -((J)K(J+l)b (J)b'(j) -(J+l) -)(J)] l) (D)uW

0 -0 0 -oo 0 0 20

(D.3)

The last term at,•ve is equal to zero. This can be easily seen by re-
arranging it and using (4.29):

A'(j)K~~ W1b (j) x (1 ) - VW ([b(JiA (Jl)b (Jl) + \(J)XJ1u (j) 0(D4
'0 -o 0 oo -O - 0 0

Now, using (D.4 ) and (4.30 in (D.3) one immediately obtains (4.36), the

desired result. Notice that this result is independent of the control u.

A:1) 1I~~ J 1-Z j)b()Z(~~ J XJ] oj D4
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